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Abstract

We explore recent improvements in Aspect
Based Sentiment Analysis (ABSA), which
is a subfield of sentiment analysis. Despite
widespread adoption of sentiment analysis,
ABSA is a challenging task because it involves
examining the type of sentiments as well as
sentiment targets expressed in product reviews,
both of which are domain-dependent tasks. We
examine a recent paper by Karimi et al. (1)
and find that using newer and generalized mod-
els in place of domain-specific models can im-
prove performance on sentiment classification
while impairing performance on sentiment tar-
get identification.

1 Introduction

ABSA studies consumer opinions on market prod-
ucts and involves examining sentiment valences
as well as sentiment targets expressed in product
reviews. In our work, we explore the novel BERT-
based architectures proposed by (1) for two main
ABSA tasks, namely Aspect Extraction (AE) and
Aspect Sentiment Classification (ASC), in order to
improve their model’s performance.

1.1 Aspect Extraction

One of the two core tasks in ABSA, Aspect ex-
traction (AE) attempts to find aspects on which
reviewers have expressed opinions as explained
by (2). In supervised settings, it is typically mod-
eled as a sequence labeling task, where each token
from a sentence is labeled as one of {Begin, Inside,
Outside}. A continuous chunk of tokens that are la-
beled as one "B" and followed by zero or more "I"s
forms an aspect. The authors of (1) build upon the
work of (3) to adapt BERT’s general language mod-
els and to incorporate domain word embeddings to
improve the BERT’s performance.

1.2 Aspect Sentiment Classification

Aspect sentiment classification (ASC) classifies
sentiment polarities (positive, negative, or neutral)
expressed on an aspect extracted from a review
sentence. There are two inputs to ASC: an aspect
and a review sentence mentioning that aspect. As
explained by (1), the representation for this element
is embodied in the architecture of the BERT model.
For each sequence as input, there are two extra
tokens that are used by the BERT model:

[CLS], w1, w2, ..., wn, [SEP ] (1)

The sentiment of a sentence is represented by
the [CLS] token representation in the final layer
of the architecture. The class probability is, then,
computed by the softmax function. However, it is
important to note that the sentiment of a sentence
often differs from the sentiment of the term itself.
For example, see the sentence:

"While the smoothies are a little big for
me, the fresh juices are the best I have
ever had!"

In this review, the sentiment expressed towards
"smoothies" is negative, while the sentiment of
"juices" is positive, as is the sentiment of the over-
all sentence. ASC is therefore more specific and
cannot rely solely on [CLS] token sentiment.

2 Related work

2.1 BERT Models and Architectures

In recent research, BERT has been one of key inno-
vations towards progress on contextualized repre-
sentation learnings (4)(5)(6). BERT adopts a fine-
tuning approach that requires almost no specific
architecture for each end task. This is desirable
as an intelligent agent should minimize the use of
prior human knowledge in the model design.



As mentioned earlier, in this project we attempt
to build upon a novel BERT-based architecture in-
troduced in (1), which itself builds upon work that
further trains BERT for domain-specific tasks in
(7) and (3). This enriches word and sentence level
representations using additional domain-specific
restaurant and laptop data by post-training BERT
models, which they call BERT-PT. Following on
this enrichment, aggregation layers which extract
information from the four final layers of BERT are
added. This builds on work which shows that hid-
den layers of deep networks, in particular BERT,
can provide region-specific information useful for
various tasks.

2.1.1 Parallel and Hierarchical Aggregation

As described by (8) BERT and deep models can
capture knowledge of the language as they grow.
The initial to middle layers of BERT were shown to
extract syntactic information, whereas the language
semantics are represented in higher layers.

In the architecture presented by (1), the infor-
mation in the final four hidden layers is exploited
using two similar methods: parallel aggregation
and hierarchical aggregation. In parallel aggrega-
tion, prediction is performed on a BERT layer fed
with the outputs of each hidden layer and then ag-
gregated. In hierarchical aggregation, the outputs
of the new BERT layers are fed into the input of
the following new BERT layer.

Additionally, in the aspect-extraction task, the
outputs from these layers are modified using condi-
tional random fields in order to capture sequential
information.

2.2 Alternative BERT-based models

2.2.1 RoBERTa

RoBERTa (Robustly Optimized BERT Pretraining
Approach) is a further development of BERT and
has achieved better performance than base BERT
on many tasks(9). This is due to additional train-
ing on the masked language model task, omitting
training on the next sentence prediction task and by
using a byte-pair encoder for embeddings, similar
to GPT-2. We hypothesize that by using a model
which generally shows better performance than
BERT on most tasks we should yield an ABSA
model which additionally performs better on AE

Figure 1: A diagram from (1) illustrating the H-SUM
architecture. P-SUM is identical except that the output
of each new BERT layer does not feed the layer below
it.

and ASC tasks and would potentially be more gen-
eralizeable.

2.2.2 SpanBERT

SpanBERT, another version of BERT, uses a pre-
training method that is designed to better repre-
sent and predict spans of text, thereby aiming to
improve pre-training by representing and predict-
ing spans(10). Given the nature of AE as a span-
indentification task and the possible interpretation
of ASC as an information-extraction task, we pro-
pose that a model more attuned to spans of text
could yield better performance on these ABSA
tasks.

3 Proposed models and research
questions

Our work in this paper is twofold:

• Reconstruction and validation studies (run-
ning existing models such as BERT-PT)

• Enhancement and research studies (fine-
tuning new models and architectures)

Additionally we aim to answer questions in the
following two areas:

Generalization. Does the application of parallel
or hierarchical aggregation layers (as proposed by
Karimi et al) generalize to other versions of BERT
that were trained on datasets other than domain-
specific BERT-PT?



Aspect Extraction (AE)

Train Test

Dataset Sent. Asp. Sent. Asp.
Laptop 3045 2358 800 654
Rest16 2000 1743 676 622

Table 1: Laptop and restaurant datasets for AE. Sent.:
Sentences; Asp.: Aspects; Rest16: Restaurant dataset
from SemEval 2016

Complication. Do PSUM and HSUM architec-
tures yield performance improvements with addi-
tional outer layers (as opposed to the current four
layers)?

4 Design and implementation

In order to answer these questions, we aimed to
maintain continuity with (1) and (3) by using the
same data and initial codebase. This meant that our
modelling was mainly in PyTorch. Our datasets
were also the same, viz. Laptop (LPT14) and
restaurant (RST16) datasets from SemEval 2014
and 2016 for AE and the Laptop (LPT14) and
restaurant (RST14) datasets from SemEval 2014
for ASC.

As we pursued revisions to the above model,
we used the HuggingFace transformers library (11)
to enable rapid prototyping of new models. Our
source code is available for further research and
analysis1.

We ran our experiments on a Google Cloud
environment machine configured at a base
n1-standard-16 architecture and an NVIDIA
Tesla T4 GPU, using batches of 16 for all our mod-
els. For training, the Adam optimizer was used
and the learning rate was set to 3e5. We used
150 examples from the distributed training data for
validation using scripts from (1) and (3).

4.1 Generalized model implementation

To test if these layers provide deeper performance
improvements beyond that achieved on BERT-PT,
we replaced the base BERT-PT models first with
base BERT as a comparison, and then with two
alternative models, discussed above: RoBERTa
and SpanBERT.

1https://github.com/vbeohar/BERT-for-ABSA-
Generalized-UCBerkeley

Aspect Classification (ASC)

Train Test

Dataset Pos Neg Neu Pos Neg Neu
Laptop 987 866 460 341 128 169
Rest14 2164 805 633 728 196 196

Table 2: Laptop and restaurant datasets for ASC. Pos,
Neg, Neu: Number of positive, negative, and neutral
sentiments, respectively; Rest14: Restaurant dataset
from SemEval 2014

Additionally, we replicated results from (1) with
a slightly different version of BERT-PT, which
was pretrained on a larger corpus of reviews across
domains outside laptop and restaurant reviews.

4.2 Complication model implementation

Based on insights from error analysis of RoBERTa
in particular, we hypothesized that accessing more
than the four last layers of BERT architectures
could provide more information related to struc-
ture and grammar.

To investigate, we replicated the P-SUM and
H-SUM architectures with eight instead of four lay-
ers. We preserved all hyperparameters and used
the same BERT-PT models as bases in order to iso-
late the potential performance gains from doubling
layer counts.

5 Results

5.1 Replication & Confirmation Models

To begin, we attempted to replicate past work in
this field by re-running BERT-PT without further
pre-training on the restaurant and laptop datasets
prior to task training (BERT-PT*). We saw similar
performance to BERT-PT in past published work.

After having run this model, we noticed that the
base version of BERT (bert-base-uncased)
had not been run with the P-SUM or H-SUM
architecture applied. Since we hoped to show
that aggregation architectures like P-SUM and H-
SUM improved performance regardless of domain-
specificity, we trained BERT on our AE and ASC
tasks with the P-SUM architecture applied. We saw
a strong improvement versus base BERT across
all tasks, indicating that aggregation architectures
do improve performance on ABSA tasks absent
domain-specific pretraining.



AE ASC

Laptop Rest16 Laptop Rest14

Model Aggregation Agg. Layers F1 F1 Acc MF1 Acc MF1

BERT None – 79.28 74.10 75.29 71.91 81.54 71.94
BERT-PT None – 84.26 77.97 78.07 75.08 84.95 76.96
BERT-PT P-SUM 4 85.94 81.99 79.55 76.81 86.30 79.68
BERT-PT H-SUM 4 86.09 82.34 79.40 76.52 86.37 79.67
BERT-PT* None – 84.07 77.64 77.52 74.36 82.07 72.04
BERT P-SUM 4 83.14 77.76 77.74 74.23 84.41 76.74
SpanBERT P-SUM 4 82.41 77.53 76.43 72.99 83.25 75.0
RoBERTa(5) P-SUM 4 81.28 78.88 78.21 75.01 84.86 77.68
RoBERTa(5) H-SUM 4 81.96 79.48 78.46 75.44 84.53 77.06
RoBERTa(9) H-SUM 4 82.59 80.61 80.23 77.61 86.25 79.71
BERT-PT P-SUM 8 84.95 81.13 79.43 76.83 85.90 78.87
BERT-PT H-SUM 8 85.86 82.38 79.10 76.37 86.20 79.25

Table 3: Performance of base BERT, Domain-Specific BERT (BERT-PT) and other BERT-based models (RoBERTa
and SpanBERT) under different aggregation architectures. Model results presented as the average of 9 runs, except
BERT - P-SUM, SpanBERT, and RoBERTa(5 epochs) - P-SUM, of which we only had results for 5 runs at time
of submission. Bold figures indicate performance within 1 percentage point of the best observed result, and an
underline indicates our best observed result. Acc: Accuracy, MF1: Macro-F1.

5.2 SpanBERT

After obtaining encouraging results with the PSUM
architecture configured on the outer layers of a
plain-vanilla BERT model, we decided to explore
this option on SpanBERT as well. Our intuition
being that SpanBERT, unlike BERT, was trained
with masked random contiguous spans rather than
random individual tokens – and as such provided
improved predictions of spans of texts.

However, after running predictions on 5 trials
with 4 epochs each, the SpanBERT PSUM model
yielded less than satisfying results as compared
to the plain-vanilla PSUM BERT (let alone more
advanced RoBERTa and domain-specific BERT-PT
models).

An error analysis on the ASC laptop dataset re-
vealed that of those misclassified samples, most
of the samples were originally neutral (57%)
– with a majority of them being classified as
positive).

To us this indicated that either SpanBERT
needed more domain specific training to correctly
perform coreference resolution or was confusing
sentiments without their contextual representa-
tions (for example, Needs a CD/DVD drive
and a bigger power switch has two as-
pects CD/DVD drive and power switch,

with neutral and negative sentiments. In
this case, SpanBERT misclassified both sentiments
as negative and neutral respectively, effectively flip-
ping the order of the sentiments for the aspects
present).

5.3 RoBERTa

When SpanBERT failed to outperform our base-
line comparisons, we hoped to yield additional im-
provements with RoBERTa, a newer and generally
better-performing model. We attempted to select
the proper number of training epochs by inspecting
the training loss and validation loss generated by
the model. The results for 9 epochs of training for
each task, which were initially performed without
inspecting performance on test data, are presented
in figure 2. These results seem to indicate that
4 or 5 epochs would be ideal in minimizing both
training and validation losses, but we saw stronger
results on our test dataset for the model trained on
9 epochs, which we had performed blindly first
in order to generate the model loss figures above.
This likely is due to us inspecting loss rather than
accuracy or F1 scores in our attempts to determine
training epoch length.

RoBERTa’s AE errors seem to indicate limits
to the performance of non-domain-specific



Figure 2: Validation and training losses for RoBERTa - H-SUM over 9 different runs.

models. Inspection of a sample of errors on
aspect extraction revealed that many were due to
improper handling of proper or domain-specific
nouns. For example, in the sentence Try the
Chef’s Choice for sushi as the
smoked yellowtail was incredible,
our RoBERTa model identified Chef’s
Choice, sushi and smoked yellowtail
as aspects, but yielded an error since the full
aspect was Chef’s Choice for sushi.
Similarly, in has enough storage for
most users and many ports, our model
fails to identify ports as an aspect of a laptop.
Since these domain-specific errors seem common,
it is unlikely that we will be able to improve
this model’s ability to perform aspect extraction
without more domain-specific training.

We additionally randomly selected 50 mis-
classified examples from the ASC task. Of
those examined, roughly 26% appear to be due
to cue words with positive or negative valence
grammatically unrelated to the term in question.
For example, in Stick to the items the
place does best, brisket, ribs,
wings, cajun shrimp is good, not
great, the model incorrectly identifies ribs
as having a negative sentiment, despite the not
great clause clearly referring to the cajun
shrimp. This indicated that a potential area for
improvement would be structuring our model
to increase information about regions within
sentences and grammatical structure.

5.4 Complication Model Results and Dis-
cussion

Upon examining the results of various flavors of
BERT (BERT-PT, BERT, SpanBERT, RoBERTa)
from table 3 we can make following inferences.

• BERT-PT (pretrained on domain specific
tasks) on HSUM and PSUM (85.94 F1 and
86.09 F1) outperforms most of the flavors of
BERT, including best performing RoBERTa
model HSUM (81.96 4 epochs and 82.59 with
9 epochs) for AE tasks

• Above results of HSUM and PSUM BERT-PT
demonstrate that domain specific post-trained
model is more accurate for aspect extraction.
This shows that aspect extraction task benefits
from domain specific training as compared to
plain-vanilla BERT or other flavors of post-
trained BERT models

• When comparing BERT-PT 4-layer HSUM
and PSUM with BERT-PT 8-layer PSUM and
HSUM models - it is evident that the addition
of more layers does not result in increased
scores for either AE or ASC tasks

6 Areas for future research

Our work indicates that better performance on
ABSA tasks depends on strong domain knowledge
for the Aspect Extraction task but stronger gen-
eral models for the Aspect Sentiment Classification
task. Further progress may be gleaned by pursuing
the following questions:



• Can a BERT model which is pre-trained to bet-
ter understand parts-of-speech or other gram-
matical structures help yield enhanced accu-
racy?

• Can further tweaking/permuting the outer
BERT layers improve performance over H-
SUM and P-SUM architectures? For example,
are there better and worse hidden layers from
which to extract information? Are there better
ways to aggregate information from BERT’s
hidden layers to maximize meaning?

• Can BERT-based aggregation architectures be
combined with other state-of-the-art innova-
tions like Automated Concatenation of Em-
beddings (ACE) (12) to produce even stronger
results? How could such an approach be effi-
ciently implemented?

7 Conclusion

In this paper, we delved deeper into two questions:
whether generalized BERT models yield equiva-
lent/or better results as compared to architectures
proposed by (1); and whether generalized BERT
versions or those with additional layers in HSUM
and PSUM aggregation architectures yield equiva-
lent/or better results.

By adding aggregation architecture to base
BERT, we saw that even non-specialized language
models can improve performance with aggregation
methods. By using models like SpanBERT and
RoBERTa in the place of base BERT, we saw that
improved BERT models are able to match or ex-
ceed the performance of domain-specific models
in aspect sentiment classification with similar ar-
chitectures, provided they are robustly post-trained.
Finally, in failing to improve results for aspect ex-
traction, we found that domain-specific training is
valuable in performance of the aspect extraction
task.
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